Neutrinos in LSS

Pat McDonald (Lawrence Berkeley Lab)

Outline

- The story of neutrinos and Large Scale Structure is basically about the sum of neutrino masses (where LSS means ~tracers of large scale density fluctuations other than the CMB)
- Currently, Baryonic Acoustic Oscillation (BAO) distance measurements are important, probing the effect of neutrino mass on the background evolution.
- In the future, measurements of the suppression of structure formation by neutrino free streaming will dominate (measured by redshift space distortions and gravitational lensing).
- All in the context of critical CMB constraints.

Densities vs. time

$$\rho_{\nu}^{\rm nr} = m_{\nu} n_{\nu}$$

$$z_{\rm nr} \sim 94 \; (m_{\nu}/0.057 \; {\rm eV})$$

$$\Omega_{\nu} = \frac{\rho_{\nu}}{\rho_{c}} = 0.00125 \left(\frac{m_{\nu}}{0.057 \text{eV}} \right) \left(\frac{h}{0.7} \right)^{-2}$$

>0.4% of density today

Sum of masses vs. hierarchy

•Key fact: Late time clustering basically only measures the sum of neutrino masses.

•Minimum sum of masses:

-normal: 59 meV

-inverted: I00 meV

•LSS might be able to identify a minimal mass normal hierarchy.

LSS basics

Density fluctuations relative to mean:

$$\delta(\mathbf{x}) = \frac{\rho(\mathbf{x}) - \bar{\rho}}{\bar{\rho}}$$

Power spectrum: $P(k) \propto \langle |\delta_{\mathbf{k}}|^2 \rangle \propto \mathrm{FT}\left[\langle \delta(\mathbf{x})\delta(\mathbf{x}+\mathbf{r})\rangle\right]$

Correlation function: $\xi(\mathbf{r}) \equiv \mathrm{FT}[P(\mathbf{k})]$

LSS Basics

Initial fluctuations from inflation:

$$P_{\text{inflation}}(k) = A \left(\frac{k}{k_{\star}}\right)^{n_{s} + \frac{1}{2}\alpha_{s} \ln\left(\frac{k}{k_{\star}}\right) + \dots}$$

Linear evolution: $\delta_i = T_i(k,z)\delta_0$ (CAMB, CLASS)

Large scale observables, perturbative bias:

(infinite papers including McDonald & Roy 2009)

$$\delta_g = b_g \delta + \epsilon_g + \dots$$

Non-linearity disconnects small scales from initial conditions / background Universe

Barion Acoustic Oscillations

Sound speed:

$$c_s^2 = \frac{\partial p}{\partial \rho} = \frac{c^2}{3} \left(1 + \frac{3\rho_b}{4\rho_\gamma} \right)^{-1}$$

Sound horizon:

$$r_s(z_{\star}) = \int_{z_{\star}}^{\infty} dz \frac{c_s(z)}{H(z)}$$

CMB fixes standard ruler:

$$H^2(\text{high }z) \propto \rho_{\gamma}(z) + \rho_c(z) + \rho_b(z) + \rho_{\nu \sim \text{massless}}(z)$$

(movie by Daniel Eisenstein using CMBFast from Seljak & Zaldarriaga)

Fluctuations are linear, so the random field result is a superposition of these solutions.

BAO

Planck 2018: $r_{\rm drag} = 147.18 \pm 0.29 \; {\rm Mpc}$

$$\Delta v_{BAO} = rac{r_s}{1+z} rac{H(z)}{D_A(z)}$$
 Observer

BAO and neutrinos

$$D_A^{\text{flat}}(z) = (1+z)^{-1} \int_0^z dz' \frac{c}{H(z')}$$

Integral over H(z) to CMB precisely measured

$$H_{\mathrm{flat}}^2(z) \propto \rho_{\gamma}(z) + \rho_c(z) + \rho_b(z) + \rho_{\Lambda} + \rho_{\nu}(z)$$

(Planck 2018 compilation, arXiv:1807.06209)

(BOSS 2017, Alam et al., Beutler et al.)

Current constraints

(Planck 2018, arXiv:1807.06209)

Choudhury & Choubey (2018) Planck 2015+BOSS

Model: $\Lambda CDM + \sum m_{\nu}$	
Dataset	$\sum m_{\nu} \ (95\% \ \text{C.L.})$
$TTTEEE + BAO + \tau 0p055$	< 0.124 eV
$TTTEEE + BAO + FS + \tau 0p055$	< 0.133 eV

Future: DESI, etc.

Planck + DESI BAO rms predicted neutrino mass error 79 meV (vs. 86 meV for BOSS)

Neutrino suppression of power

$$v_{\rm rms} \simeq 3173 \ (1+z) \ (0.057 \ {\rm eV}/m_{\nu}) \ {\rm km \ s^{-1}}$$

- Only at z~100 does a 50 meV neutrino finally become nonrelativistic.
- Contribute to the subsequent background evolution as if they were dark matter.
- Don't cluster except on very large scales.
- Mass perturbations are "underweight" and don't grow as fast as they would for pure CDM.

$$P(k) \propto \langle |\delta_{\mathbf{k}}|^2 \rangle \propto \text{FT} \left[\langle \delta(\mathbf{x})\delta(\mathbf{x} + \mathbf{r}) \rangle \right]$$

Redshift space anisotropy

$$\frac{c~\Delta\lambda}{/~\lambda} \simeq \frac{H(z)}{1+z} \Delta x_{\parallel} + \Delta v_{\parallel} \qquad \text{peculiar velocity}$$
 observed redshift radial comoving separation

$$\delta_g = (b_g + f\mu^2)\delta_{cb} + \epsilon_g + \dots$$
 100
$$\mu = \frac{k_{\parallel}}{k} \qquad f = \frac{d\ln\delta_{cb}}{d\ln a} \qquad \text{if } \delta_{cb} = 0$$

(BOSS, Samushia et al. 2014)

CMB optical depth degeneracy

Planck+DESI:
$$\sigma_{ au}=0.008 \to \sigma_{\Sigma m_{
u}}=29~{
m meV}$$

$$\sigma_{ au}=0 \to \sigma_{\Sigma m_{
u}}=16~{
m meV}$$

CMB measures $A_s e^{-2\tau}$ very precisely. $\sigma_{\ln A_s} = 2\sigma_{ au}$

FIG. 8. Neutrino mass constraints for 90 million \sim ELGs, 10 million \sim LRGs per 14000 sq. deg., out to z < 3, vs. survey area (i.e., the galaxy survey Fisher matrix is just scaled proportional to area). Weak τ is \sim 0.01 prior, strong \sim 0.005, b_{η} means free bias on RSD term.

No wonder it is hard to measure suppression shape!

Projections

TABLE II. Projected error on Σm_{ν} , in meV.

		$\sigma_{ au}$	
surveys	0.008	0.004	0.002
Planck+DESI BAO	78	77	77
Planck+DESI	29	20	18
CMB-S4+DESI	26	17	13
CMB-S4+DESI+LSST	23	15	11
CMB-S4+MegaMapper	23	14	11
CMB-S4+LSST+MegaMapper	21	13	9.9

DESI following arXiv:1611.00036, 2020-2025+

CMB-S4 following arXiv:1610.02743, ~2029+ (S3 Simons Observatory)

LSST following Schaan et al. (2017), 2022-2032

MegaMapper: arXiv:1907.11171, 2029?? (100m galaxies 2<z<5)

Fisher matrix calculations similar to Font-Ribera et al. (2014)

Euclid would be like somewhat more DESI and somewhat more LSST

Optical depth improvements?

- CMB measurement comes from low-I polarization, hard to do from ground.
- CLASS is a ground-based experiment aimed at this, which is running and hopes to achieve better than 0.004 (Watts et al. 2018)
- BFORE balloon hopes to do something similar flying in 2021 (Bryan et al. 2018)
- LiteBIRD satellite could achieve cosmic variance limit
 ~0.002, launching in ~2028 (see also COrE, PICO)

Dark Radiation

current Planck: $N_{\nu, {\rm eff}} = 2.99 \pm 0.17$

surveys	$\sigma_{N_{ u,{ m eff}}}$
Planck+DESI	0.077
CMB-S4	0.036
CMB-S4+DESI	0.030

Extra Parameters

Projected error on Σm_{ν} marginalized over other parameters, for CMB-S4+DESI.

		$\sigma_{ au}$	
marginalized	0.008	0.004	0.002
	26	17	13
$N_{ u, { m eff}}$	29	17	14
eta_s	27	17	13
Ω_k	40	24	20
w(z)	52	40	37

Summary

• Current constraints come from Planck+BAO $\Sigma m_{\nu} < 120~{\rm meV}~(95\%)$

 Future constraints ~20 meV rms will come from free streaming suppression of power, through RSD and/or lensing, with the achievable level driven by the CMB optical depth measurement, because they are driven by late time power normalization, not power spectrum shape.

Annoyingly non-simple maximum k

- Wanted to somewhat realistically account for fact that non-linearity is less of a problem at high z, and for lower bias objects.
- Cut on observable fluctuation amplitude, including z dependence and angle dependence (radial modes have higher amplitude so lower max k).
- Additionally have tracer-independent, Lagrangian displacement-inspired z and angle-dependent cut.
- Also, Seo & Eisenstein signal damping factors (e.g., makes BAO within broadband consistent with isolated BAO).

FIG. 28. Derivative of tracer power with respect to sum of neutrino masses, at z=1.55 (for a case where there are some LRG-bias objects at all z). The solid lines stop at the $\Delta^2(\mathbf{k}) < 1$ cutoff that we use for Fisher calculations (which is much more stringent for high bias). The dotted lines show the object-independent maximum k, which has no impact in this case.